Business Systems Applications

Project Planning

Using Simulation to Support Project Planning and Cost Modeling

Project Planning

The planning and management of programs and large, complex projects is inherently difficult, not only due to their complexity, but also because of the large uncertainties that are often involved.

By combining the flexibility of a general-purpose and highly-graphical probabilistic simulation framework with specialized features to support financial modeling, GoldSim is ideally suited as a high-level project planning tool suitable during the feasibility assessment and conceptual design phases, while the exact scope of the program is still in flux and it is critical to simulate the range of possible outcomes.

Project Planning

Examples of program planning suitable for GoldSim modeling include:

  • Large construction projects related to industrial facilities, public infrastructure, and large-scale residential, retail, and commercial development;
  • Implementation of information technology upgrades; and
  • Development of new products (e.g., hardware, software, pharmaceutical).

The GoldSim approach to program and project management differs from typical project management tools in the following ways:

  • External factors (e.g., economic, competitive, environmental, political) are easily simulated using GoldSim.
  • GoldSim isn't limited to simulating a single outcome but allows for a range of outcomes and modification of the program scope due to interim results or outcomes.
  • Rather than directly specifying the attributes (e.g., cost, duration, and precedence requirements) of the various tasks comprising the program, GoldSim can be used to dynamically predict these attributes as a function of the changing project environment.

Learn More

Examples

Modules

White Papers

Technical Papers

  • Development of an Execution Strategy Analysis Capability and Tool for Storage of Used Nuclear Fuel

    Publication for the International Atomic Energy Agency, IAEA-CN-226-34 – June 2015

    R. Stoll, J. Greeves, and J. Voss with Predicus LLC, USA; A. Keizur and A. Neir with Golder Associates Inc., USA; N. Saraeva and W. Nutt with Argonne National Laboratory, USA

    An Execution Strategy Analysis (ESA) capability and tool is being developed to evaluate alternative execution strategies for future deployment of a consolidated Interim Storage Facility (ISF) using a consent-based siting process per the Administration’s Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Application of an ESA approach not only leverages on but also goes beyond traditional project analysis tools. The ESA tool allows for on-going performance assessment of the evolving project execution plan that takes into account significant assumptions, risks, and uncertainties throughout the project lifecycle. The ESA process and tool are used to support the development of plans, budgets, and alternative execution/ implementation strategies for meeting the goals in the Strategy. The project is being applied in a dynamic probabilistic simulation model using GoldSim.

    View Paper or Abstract

  • Prioritization Risk Integration Simulation Model (PRISM) For Environmental Remediation and Waste Management

    WM2012 Conference, Phoenix, Arizona, USA – February 2012

    David L. Pentz, Ralph H. Stoll, John T. Greeves, R. Ian Miller, and W. Mark Nutt

    The PRISM (Prioritization Risk Integration Simulation Model), a computer model was developed to support the Department of Energy’s Office of Environmental Management (DOE-EM) in its mission to clean up the environmental legacy from the Nation’s nuclear weapons materials production complex. PRISM provides a comprehensive, fully integrated planning tool that can tie together DOE-EM’s projects. It is designed to help DOE managers develop sound, risk-informed business practices and defend program decisions. It provides a better ability to understand and manage programmatic risks. The underlying concept for PRISM is that DOE-EM “owns” a portfolio of environmental legacy obligations (ELOs), and that its mission is to transform the ELOs from their current conditions to acceptable conditions, in the most effective way possible. There are many types of ELOs - - contaminated soils and groundwater plumes, disused facilities awaiting D&D, and various types of wastes waiting for processing or disposal. For a given suite of planned activities, PRISM simulates the outcomes as they play out over time, allowing for all key identified uncertainties and risk factors.

    PRISM is based on the GoldSim software that is widely used for risk and performance assessment calculations. PRISM can be run in a deterministic mode, which quickly provides an estimate of the most likely results of a given plan. Alternatively, the model can be run probabilistically in a Monte Carlo mode, exploring the risks and uncertainties in the system and producing probability distributions for the different performance measures.

    View Paper or Abstract

  • Prioritization Risk Integration Simulation Model (PRISM) for Environmental Remediation and Waste Management

    WM2012 Conference, Phoenix, AZ – February 2012

    David L. Pentz, Ralph H. Stoll, John T . Greeves, Predicus LLC; R. Ian Miller, GoldSim Technology Group; W. Mark Nutt, Argonne National Laboratory

    The PRISM (Prioritization Risk Integration Simulation Model), a computer model was developed to support the Department of Energy's Office of Environmental Management (DOE-EM) in its mission to clean up the environmental legacy from the Nation’s nuclear weapons materials production complex. PRISM provides a comprehensive, fully integrated planning tool that can tie together DOE-EM's projects. It is designed to help DOE managers develop sound, risk-informed business practices and defend program decisions. It provides a better ability to understand and manage programmatic risks.

    View Paper or Abstract

  • Risk-Based Performance Assessment of Large Projects

    WM2010 Conference – March 2010

    John T. Greeves and Ralph Stoll, Predicus LLC, John Tauxe, Neptune and Company

    Government and commercial nuclear projects have been criticized for the lack of a formal risk-based decision support tool for use in properly prioritizing large projects with significant uncertainties. Predicus LLC collaborated with the GoldSim Technology Group LLC to develop this state-of-the-art process to address this need for both government and commercial clients. Predicus LLC was supported by Neptune and Company to develop the specific example shown in this paper.

    View Paper or Abstract

  • Development of the ENVI Simulator to Estimate Korean SNF Flow and its Cost

    Proceedings of the 12th International Conference on Environmental Remediation And Radioactive Waste Management ICEM 2009 – October 2009

    Yongsoo Hwang and Ian Miller

    This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for managing spent nuclear fuel (SNF) in South Korea.

    View Paper or Abstract